415 research outputs found

    Climate change and anthropogenic intervention impact on the hydrologic anomalies in a semi-arid area : lower Zab river basin, Iraq

    Get PDF
    Climate change impact, drought phenomena and anthropogenic stress are of increasing apprehension for water resource managers and strategists, particularly in arid regions. The current study proposes a generic methodology to evaluate the potential impact of such changes at a basin scale. The Lower Zab River Basin located in the north of Iraq has been selected for illustration purposes. The method has been developed through evaluating changes during normal hydrological years to separate the effects of climate change and estimate the hydrologic abnormalities utilising Indicators of Hydrologic Alteration. The meteorological parameters were perturbed by applying adequate delta perturbation climatic scenarios. Thereafter, a calibrated rainfall-runoff model was used for streamflow simulations. Findings proved that climate change has a more extensive impact on the hydrological characteristics of the streamflow than anthropogenic intervention (i.e. the construction of a large dam in the catchment). The isolated baseflow is more sensitive to the precipitation variations than to the variations of the potential evapotranspiration. The current hydrological anomalies are expected to continue. This comprehensive basin study demonstrates how climate change impact, anthropogenic intervention as well as hydro-climatic drought and hydrological anomalies can be evaluated with a new methodology

    Adaptation strategy to mitigate the impact of climate change on water resources in arid and semi-arid regions : a case study

    Get PDF
    Climate change and drought phenomena impacts have become a growing concern for water resources engineers and policy makers, mainly in arid and semi-arid areas. This study aims to contribute to the development of a decision support tool to prepare water resources managers and planners for climate change adaptation. The Hydrologiska Byråns Vattenbalansavdelning (The Water Balance Department of the Hydrological Bureau) hydrologic model was used to define the boundary conditions for the reservoir capacity yield model comprising daily reservoir inflow from a representative example watershed with the size of 14,924 km2 into a reservoir with the capacity of 6.80 Gm3. The reservoir capacity yield model was used to simulate variability in climate change-induced differences in reservoir capacity needs and performance (operational probability of failure, resilience, and vulnerability). Owing to the future precipitation reduction and potential evapotranspiration increase during the worst case scenario (−40% precipitation and +30% potential evapotranspiration), substantial reductions in streamflow of between −56% and −58% are anticipated for the dry and wet seasons, respectively. Furthermore, model simulations recommend that as a result of future climatic conditions, the reservoir operational probability of failure would generally increase due to declined reservoir inflow. The study developed preparedness plans to combat the consequences of climate change and drought

    Spatial patterns and temporal variability of drought in Western Iran

    Get PDF
    An analysis of drought in western Iran from 1966 to 2000 is presented using monthly precipitation data observed at 140 gauges uniformly distributed over the area. Drought conditions have been assessed by means of the Standardized Precipitation Index (SPI). To study the long-term drought variability the principal component analysis was applied to the SPI field computed on 12-month time scale. The analysis shows that applying an orthogonal rotation to the first two principal component patterns, two distinct sub-regions having different climatic variability may be identified. Results have been compared to those obtained for the largescale using re-analysis data suggesting a satisfactory agreement. Furthermore, the extension of the large-scale analysis to a longer period (1948–2007) shows that the spatial patterns and the associated time variability of drought are subjected to noticeable changes. Finally, the relationship between hydrological droughts in the two sub-regions and El Niño Southern Oscillation events has been investigated finding that there is not clear evidence for a link between the two phenomen

    The impacts avoided with a 1.5 °C climate target: a global and regional assessment

    Get PDF
    The 2015 Paris Agreement commits countries to pursue efforts to limit the increase in global mean temperature to 1.5 °C above pre-industrial levels. We assess the consequences of achieving this target in 2100 for the impacts that are avoided, using several indicators of impact (exposure to drought, river flooding, heat waves and demands for heating and cooling energy). The proportion of impacts that are avoided is not simply equal to the proportional reduction in temperature. At the global scale, the median proportion of projected impacts avoided by the 1.5 °C target relative to a rise of 4 °C ranges between 62 and 95% across sectors: the greatest reduction is for heat wave impacts. The 1.5 °C target results in impacts that would be between 27 and 62% lower than with the 2 °C target. For each indicator, there are differences in the proportions of impacts avoided between regions depending on exposure and the regional changes in climate (particularly precipitation). Uncertainty in the proportion of impacts that are avoided for a specific sector depends on the range in the shape of the relationship between global temperature change and impact, and this varies between sectors

    Nocturnal Surface Urban Heat Island over Greater Cairo: Spatial Morphology, Temporal Trends and Links to Land-Atmosphere Influences

    Get PDF
    This study assesses the spatial and temporal characteristics of nighttime surface urban heat island (SUHI) effects over Greater Cairo: the largest metropolitan area in Africa. This study employed nighttime land surface temperature (LST) data at 1 km resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua sensor for the period 2003–2019. We presented a new spatial anomaly algorithm, which allowed to define SUHI using the most anomalous hotspot and cold spot of LST for each time step over Greater Cairo between 2003 and 2019. Results demonstrate that although there is a significant increase in the spatial extent of SUHI over the past two decades, a significant decrease in the mean and maximum intensities of SUHI was noted. Moreover, we examined the dependency between SUHI characteristics and related factors that influence energy and heat fluxes between atmosphere and land in urban environments (e.g., surface albedo, vegetation cover, climate variability, and land cover/use changes). Results demonstrate that the decrease in the intensity of SUHI was mainly guided by a stronger warming in daytime and nighttime LST in the neighborhood of urban localities. This warming was accompanied by a decrease in surface albedo and diurnal temperature range (DTR) over these areas. Results of this study can provide guidance to local urban planners and decision-makers to adopt more effective mitigation strategies to diminish the negative impacts of urban warming on natural and human environments.</jats:p

    Summer weather becomes more persistent in a 2 °C world

    Get PDF
    Heat and rainfall extremes have intensified over the past few decades and this trend is projected to continue with future global warming1–3. A long persistence of extreme events often leads to societal impacts with warm-and-dry conditions severely affecting agriculture and consecutive days of heavy rainfall leading to flooding. Here we report systematic increases in the persistence of boreal summer weather in a multi-model analysis of a world 2 °C above pre-industrial compared to present-day climate. Averaged over the Northern Hemisphere mid-latitude land area, the probability of warm periods lasting longer than two weeks is projected to increase by 4% (2–6% full uncertainty range) after removing seasonal-mean warming. Compound dry–warm persistence increases at a similar magnitude on average but regionally up to 20% (11–42%) in eastern North America. The probability of at least seven consecutive days of strong precipitation increases by 26% (15–37%) for the mid-latitudes. We present evidence that weakening storm track activity contributes to the projected increase in warm and dry persistence. These changes in persistence are largely avoided when warming is limited to 1.5 °C. In conjunction with the projected intensification of heat and rainfall extremes, an increase in persistence can substantially worsen the effects of future weather extremes

    Characterising droughts in Central America with uncertain hydro-meteorological data

    Get PDF
    Central America is frequently affected by droughts that cause significant socio-economic and environmental problems. Drought characterisation, monitoring and forecasting are potentially useful to support water resource management. Drought indices are designed for these purposes, but their ability to characterise droughts depends on the characteristics of the regional climate and the quality of the available data. Local comprehensive and high-quality observational networks of meteorological and hydrological data are not available, which limits the choice of drought indices and makes it important to assess available datasets. This study evaluated which combinations of drought index and meteorological dataset were most suitable for characterising droughts in the region. We evaluated the standardised precipitation index (SPI), a modified version of the deciles index (DI), the standardised precipitation evapotranspiration index (SPEI) and the effective drought index (EDI). These were calculated using precipitation data from the Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), the CRN073 dataset, the Climate Research Unit (CRU), ECMWF Reanalysis (ERA-Interim) and a regional station dataset, and temperature from the CRU and ERA-Interim datasets. The gridded meteorological precipitation datasets were compared to assess how well they captured key features of the regional climate. The performance of all the drought indices calculated with all the meteorological datasets was then evaluated against a drought index calculated using river discharge data. Results showed that the selection of database was more important than the selection of drought index and that the best combinations were the EDI and DI calculated with CHIRPS and CRN073. Results also highlighted the importance of including indices like SPEI for drought assessment in Central America.Universidad de Costa Rica/[805-B0-810]/UCR/Costa RicaUniversidad de Costa Rica/[805-A9-532]/UCR/Costa RicaUniversidad de Costa Rica/[805-B3-600]/UCR/Costa RicaUniversidad de Costa Rica/[805-B0-065]/UCR/Costa RicaUniversidad de Costa Rica/[805-B3-413]/UCR/Costa RicaUniversidad de Costa Rica/[805-B4-227]/UCR/Costa RicaUniversidad de Costa Rica/[805-B4-228]/UCR/Costa RicaUniversidad de Costa Rica/[805-B5-295]/UCR/Costa RicaUppsala University/[54100006]//SueciaMarie Curie Intra-European Fellowship/[No.329762]//EuropaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models

    Get PDF
    The observed trend towards warmer and drier conditions in southern Europe is projected to continue in the next decades, possibly leading to increased risk of large fires. However, an assessment of climate change impacts on fires at and above the 1.5 °C Paris target is still missing. Here, we estimate future summer burned area in Mediterranean Europe under 1.5, 2, and 3 °C global warming scenarios, accounting for possible modifications of climate-fire relationships under changed climatic conditions owing to productivity alterations. We found that such modifications could be beneficial, roughly halving the fire-intensifying signals. In any case, the burned area is robustly projected to increase. The higher the warming level is, the larger is the increase of burned area, ranging from ~40% to ~100% across the scenarios. Our results indicate that significant benefits would be obtained if warming were limited to well below 2 °C
    • …
    corecore